Set 7: Predicate logic and inference

ICS 271 Fall 2013

Outline

- New ontology
 - objects, relations, properties, functions
- New Syntax
 - Constants, predicates, properties, functions
- New semantics
 - meaning of new syntax
- Inference rules for Predicate Logic (FOL)
 - Resolution
 - Forward-chaining, Backward-chaining
 - Unification
- Readings: Russel and Norvig Chapter 8 & 9

Pros and cons of propositional logic

- 😌 Propositional logic is *declarative*: pieces of syntax correspond to facts
- Propositional logic allows partial/disjunctive/negated information (unlike most data structures and databases)
- Solution Propositional logic is *compositional*: meaning of $B_{1,1} \wedge P_{1,2}$ is derived from meaning of $B_{1,1}$ and of $P_{1,2}$
- Meaning in propositional logic is context-independent (unlike natural language, where meaning depends on context)
- Propositional logic has very limited expressive power (unlike natural language) E.g., cannot say "pits cause breezes in adjacent squares" except by writing one sentence for each square

Propositional logic is not expressive

- Needs to refer to objects in the world,
- Needs to express general rules
 - $On(x,y) \rightarrow \sim clear(y)$
 - All man are mortal
 - Everyone who passed age 21 can drink
 - One student in this class got perfect score
 - Etc....
- First order logic, also called Predicate calculus allows more expressiveness

Logics in general

Language	Ontological Commitment	Epistemological Commitment
Propositional logic	facts	true/false/unknown
First-order logic	facts, objects, relations	true/false/unknown
Temporal logic	facts, objects, relations, times	true/false/unknown
Probability theory	facts	degree of belief $\in [0, 1]$
Fuzzy logic	degree of truth $\in [0, 1]$	known interval value

First-order logic

Whereas propositional logic assumes world contains *facts*, first-order logic (like natural language) assumes the world contains

- Objects: people, houses, numbers, theories, Ronald McDonald, colors, baseball games, wars, centuries . . .
- Relations: red, round, bogus, prime, multistoried . . ., brother of, bigger than, inside, part of, has color, occurred after, owns, comes between, . . .
- Functions: father of, best friend, third inning of, one more than, beginning of . . .

Syntax of FOL: Basic elements

ConstantsKingJohn, 2, UCB, ...PredicatesBrother, >, ...FunctionsSqrt, LeftLegOf, ...Variablesx, y, a, b, ...Connectives $\land \lor \neg \Rightarrow \Leftrightarrow$ Equality=Quantifiers $\forall \exists$

Atomic sentences

- Atomic sentence = $predicate(term_1, ..., term_n)$ or $term_1 = term_2$

Complex sentences

Complex sentences are made from atomic sentences using connectives

- $\neg S, \quad S_1 \wedge S_2, \quad S_1 \vee S_2, \quad S_1 \ \Rightarrow \ S_2, \quad S_1 \ \Leftrightarrow \ S_2$

Semantics: Worlds

- The world consists of objects that have properties.
 - There are relations and functions between these objects
 - Objects in the world, individuals: people, houses, numbers, colors, baseball games, wars, centuries
 - Clock A, John, 7, the-house in the corner, Tel-Aviv
 - Functions on individuals:
 - father-of, best friend, third inning of, one more than
 - Relations:
 - brother-of, bigger than, inside, part-of, has color, occurred after
 - Properties (a relation of arity 1):
 - red, round, bogus, prime, multistoried, beautiful

Semantics: Interpretation

- An interpretation of a sentence (wff) is an assignment that maps
 - Object constants to objects in the worlds,
 - n-ary function symbols to n-ary functions in the world,
 - n-ary relation symbols to n-ary relations in the world
- Given an interpretation, an atom has the value "true" if it denotes a relation that holds for those individuals denoted in the terms. Otherwise it has the value "false"
 - Example: Block world:
 - A, B, C, Floor, On, Clear
 - World:
 - On(A,B) is false, Clear(B) is true, On(C,F) is true...

Floor

Truth in first-order logic

- World contains objects (domain elements) and relations/functions among them
- Sentences are true with respect to a world and an interpretation
- Interpretation specifies referents for

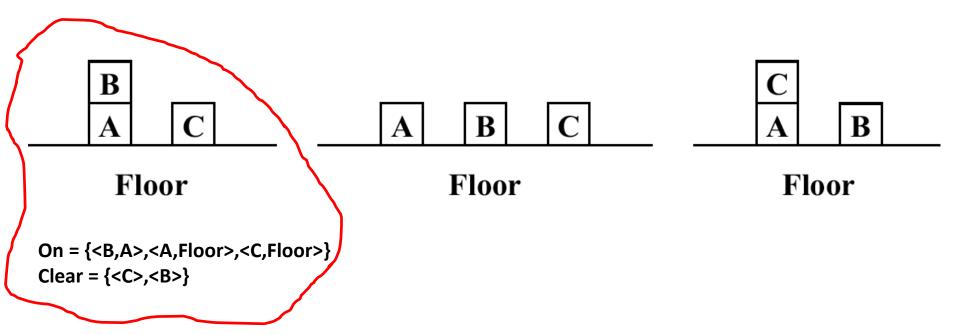
constant symbols	\rightarrow	objects
predicate symbols	\rightarrow	relations
function symbols	\rightarrow	functions

An atomic sentence predicate(term₁,...,term_n) is true iff the objects referred to by term₁,...,term_n are in the relation referred to by predicate

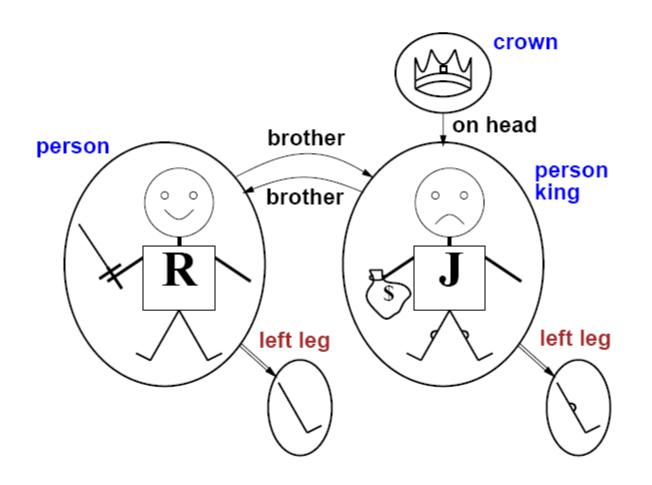
Example of Models (Blocks World)

- The formulas:
 - On(A,F) → Clear(B)
 - Clear(B) and Clear(C) \rightarrow On(A,F)
 - Clear(B) or Clear(A)
 - Clear(B)
 - Clear(C)

Possible interpretations which are models:



Models for FOL: Example



Semantics: Models

- An interpretation satisfies a sentence if the sentence has the value "true" under the interpretation.
- Model: An interpretation that satisfies a sentence is a model of that sentence
- Validity: Any sentence that has the value "true" under all interpretations is valid
- Any sentence that does not have a model is inconsistent or unsatisfiable
- If a sentence w has a value true under all the models of a set of sentences KB then KB logically entails w

Quantification

- **Universal** and **existential** quantifiers allow expressing general rules with variables
- Universal quantification
 - All cats are mammals $\forall x Cat(x) \rightarrow Mammal(x)$
 - It is equivalent to the conjunction of all the sentences obtained by substitution the name of an object for the variable x.
- Syntax: if w is a sentence (wff) then (forall x) w is a wff.

 $Cat(Spot) \rightarrow Mammal(Spot) \land$ $Cat(Rebbeka) \rightarrow Mammal(Rebbeka) \land$ $Cat(Felix) \rightarrow Mammal(Felix) \land$

Universal quantification

 $\forall \langle variables \rangle \ \langle sentence \rangle$

```
Everyone at Berkeley is smart:

\forall x \ At(x, Berkeley) \Rightarrow Smart(x)
```

```
\forall x \ P \  is true in a model m iff P with x holding for each possible object in the model
```

Roughly speaking, equivalent to the conjunction of instantiations of ${\boldsymbol{P}}$

 $\begin{array}{l} At(KingJohn, Berkeley) \Rightarrow Smart(KingJohn) \\ \land \ At(Richard, Berkeley) \Rightarrow Smart(Richard) \\ \land \ At(Berkeley, Berkeley) \Rightarrow Smart(Berkeley) \\ \land \ \dots \end{array}$

A common mistake to avoid

Typically, \Rightarrow is the main connective with \forall

Common mistake: using \land as the main connective with \forall :

 $\forall x \; At(x, Berkeley) \land Smart(x)$

means "Everyone is at Berkeley and everyone is smart"

Quantification: Existential

- Existential quantification : ∃ an existentially quantified sentence is true if it is true for some object
 ∃xSister(x,Spot) ∧ Cat(x)
- Equivalent to disjunction:

 $Sister(Spot, Spot) \land Cat(Spot) \lor$ $Sister(Rebecca, Spot) \land Cat(Rebecca) \lor$ $Sister(Felix, Spot) \land Cat(Felix) \lor$ $Sister(Richard, Spot) \land Cat(Richard)...$

• We can mix existential and universal quantification.

Existential quantification

 $\exists \left< variables \right> \ \left< sentence \right>$

Someone at Stanford is smart:

 $\exists \, x \;\; At(x, Stanford) \wedge Smart(x)$

 $\exists \ x \ P \ \ \text{is is true in a model} \ m \ \text{iff} \ P \ \text{with} \ x \ \ \text{holding for}$ some possible object in the model

Roughly speaking, equivalent to the disjunction of instantiations of ${\cal P}$

 $\begin{array}{l} At(KingJohn, Stanford) \wedge Smart(KingJohn) \\ \lor \ At(Richard, Stanford) \wedge Smart(Richard) \\ \lor \ At(Stanford, Stanford) \wedge Smart(Stanford) \\ \lor \ \ldots \end{array}$

Another common mistake to avoid

Typically, \land is the main connective with \exists

Common mistake: using \Rightarrow as the main connective with \exists :

 $\exists x \ At(x, Stanford) \Rightarrow Smart(x)$

is true if there is anyone who is not at Stanford!

Summary so far

- First order logic more expressive than prop logic
- FOL syntax
 - Constant symbols, predicate symbols, function symbols
 - Predicate is the atomic expression
- FOL model
 - Constants, relations, functions
- FOL interpretation
 - Map constant/predicate/function symbols to constants/relations/functions
- FOL semantics
 - An atomic sentence $predicate(term_1,...,term_n)$ is true iff the objects referred to by $term_1,...,term_n$ are in the relation referred to by predicate
- Quantifiers :
 - − $\exists x S(x)$ is true (in a model) if there is some object in the model that makes S(x) true
 - $\forall x S(x)$ is true (in a model) if S(x) is true for all objects in the model

Properties of quantifiers

- $\forall x \forall y \text{ is the same as } \forall y \forall x$
- $\exists x \exists y \text{ is the same as } \exists y \exists x$
- $\exists x \forall y \text{ is not } the same as \forall y \exists x$
 - $\exists x \forall y Loves(x,y)$
 - "There is a person who loves everyone in the world"
 - \forall y ∃x Loves(x,y)
 - "Everyone in the world is loved by at least one person"
- ¬∀x Likes(x,IceCream) ∃x ¬ Likes(x,IceCream)
- ¬∃x Likes(x, Broccoli) ∀x ¬ Likes(x, Broccoli)
- Quantifier duality : each can be expressed using the other
- ∀x Likes(x,IceCream) ¬∃x ¬ Likes(x,IceCream)
- $\exists x \text{ Likes}(x, \text{Broccoli}) \quad \neg \forall x \neg \text{Likes}(x, \text{Broccoli})$

Brothers are siblings

Brothers are siblings

 $\forall \, x,y \; Brother(x,y) \; \Rightarrow \; Sibling(x,y).$

"Sibling" is symmetric

Brothers are siblings

 $\forall \, x,y \; Brother(x,y) \, \Rightarrow \, Sibling(x,y).$

"Sibling" is symmetric

 $\forall \, x,y \ Sibling(x,y) \ \Leftrightarrow \ Sibling(y,x).$

One's mother is one's female parent

Brothers are siblings

 $\forall x, y \; Brother(x, y) \Rightarrow Sibling(x, y).$

"Sibling" is symmetric

 $\forall \, x,y \;\; Sibling(x,y) \; \Leftrightarrow \; Sibling(y,x).$

One's mother is one's female parent

 $\forall \, x,y \;\; Mother(x,y) \; \Leftrightarrow \; (Female(x) \wedge Parent(x,y)).$

A first cousin is a child of a parent's sibling

Brothers are siblings

 $\forall x, y \ Brother(x, y) \Rightarrow Sibling(x, y).$

"Sibling" is symmetric

 $\forall \, x,y \;\; Sibling(x,y) \; \Leftrightarrow \; Sibling(y,x).$

One's mother is one's female parent

 $\forall x,y \ Mother(x,y) \ \Leftrightarrow \ (Female(x) \land Parent(x,y)).$

A first cousin is a child of a parent's sibling

 $\begin{array}{lll} \forall x,y \ \ FirstCousin(x,y) \ \Leftrightarrow \ \exists \, p,ps \ \ Parent(p,x) \land Sibling(ps,p) \land Parent(ps,y) \end{array}$

Equality

- term₁ = term₂ is true under a given interpretation if and only if term₁ and term₂ refer to the same object
- E.g., definition of *Sibling* in terms of *Parent*:

 $\forall x, y \ Sibling(x, y) \Leftrightarrow [\neg(x = y) \land \exists m, f \neg (m = f) \land Parent(m, x) \land Parent(f, x) \land Parent(m, y) \land Parent(f, y)]$

Using FOL

- The kinship domain:
 - Objects are people
 - Properties include gender and they are related by relations such as parenthood, brotherhood, marriage
 - predicates: Male, Female (unary) Parent, Sibling, Daughter, Son...
 - Function: Mother Father
- Brothers are siblings

 $\forall x, y Brother(x, y) \Rightarrow Sibling(x, y)$

• One's mother is one's female parent

 \forall m,c *Mother(c)* = m \Leftrightarrow (*Female(m)* \land *Parent(m,c)*)

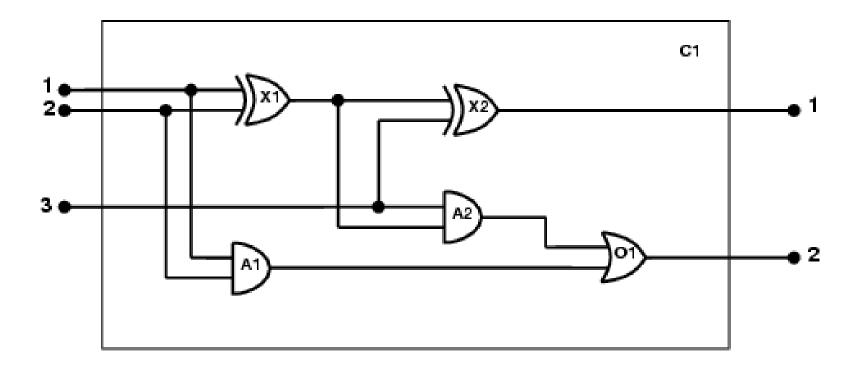
• "Sibling" is symmetric

```
\forall x, y \ Sibling(x, y) \Leftrightarrow Sibling(y, x)
```

Knowledge engineering in FOL

- 1. Identify the task
- 2. Assemble the relevant knowledge; identify important concepts
- 3. Decide on a vocabulary of predicates, functions, and constants
- 4. Encode general knowledge about the domain
- 5. Encode a description of the specific problem instance
- 6. Pose queries to the inference procedure and get answers
- 7. Debug the knowledge base

One-bit full adder



- 1. Identify the task
 - Does the circuit actually add properly? (circuit verification)
- 2. Assemble the relevant knowledge
 - Composed of wires and gates; Types of gates (AND, OR, XOR, NOT)
 - Irrelevant: size, shape, color, cost of gates
- 3. Decide on a vocabulary
 - Alternatives :

Type(X₁) = XOR Type(X₁, XOR) XOR(X₁)

4. Encode general knowledge of the domain

→
$$\forall t_1, t_2$$
 Connected(t_1, t_2) ⇒ Signal(t_1) = Signal(t_2)
 → $\forall t$ Signal(t) = 1 ∨ Signal(t) = 0

```
- 1≠0
```

```
_
```

```
- \forall t_1, t_2 \text{ Connected}(t_1, t_2) \Rightarrow \text{Connected}(t_2, t_1)
```

```
—
```

```
- \qquad \forall g Type(g) = OR \Rightarrow Signal(Out(1,g)) = 1 \Leftrightarrow \exists n Signal(In(n,g)) = 1
```

-
$$\forall$$
g Type(g) = AND ⇒ Signal(Out(1,g)) = 0 ⇔ ∃n Signal(In(n,g)) = 0

- \forall g Type(g) = XOR ⇒ Signal(Out(1,g)) = 1 ⇔ Signal(In(1,g)) ≠ Signal(In(2,g))
- —
- $\qquad \forall g Type(g) = NOT \Rightarrow Signal(Out(1,g)) \neq Signal(In(1,g))$

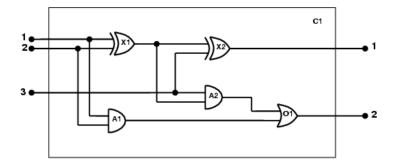
5. Encode the specific problem instance

Type $(X_1) = XOR$ Type $(A_1) = AND$ Type $(O_1) = OR$

$$Type(X_2) = XOR$$
$$Type(A_2) = AND$$

Connected(Out($1,X_1$),In($1,X_2$)) Connected(Out($1,X_1$),In($2,A_2$)) Connected(Out($1,A_2$),In($1,O_1$)) Connected(Out($1,A_1$),In($2,O_1$)) Connected(Out($1,X_2$),Out($1,C_1$)) Connected(Out($1,O_1$),Out($2,C_1$))

Connected($ln(1,C_1)$, $ln(1,X_1)$) Connected($ln(1,C_1)$, $ln(1,A_1)$) Connected($ln(2,C_1)$, $ln(2,X_1)$) Connected($ln(2,C_1)$, $ln(2,A_1)$) Connected($ln(3,C_1)$, $ln(2,X_2)$) Connected($ln(3,C_1)$, $ln(1,A_2)$)



6. Pose queries to the inference procedure

What are the possible sets of values of all the terminals for the adder circuit?

 $\begin{array}{l} \exists i_1, i_2, i_3, o_1, o_2 \quad \text{Signal}(\text{In}(1, \textbf{C}_1)) = i_1 \land \text{Signal}(\text{In}(2, \textbf{C}_1)) = i_2 \land \text{Signal}(\text{In}(3, \textbf{C}_1)) = i_3 \land \text{Signal}(\text{Out}(1, \textbf{C}_1)) = o_1 \land \text{Signal}(\text{Out}(2, \textbf{C}_1)) = o_2 \end{array}$

7. Debug the knowledge baseMay have omitted assertions like 1 ≠ 0

Interacting with FOL KBs

Suppose a wumpus-world agent is using an FOL KB and perceives a smell and a breeze (but no glitter) at t = 5:

```
Tell(KB, Percept([Smell, Breeze, None], 5))Ask(KB, \exists a \ Action(a, 5))
```

I.e., does the KB entail any particular actions at t = 5?

Answer: Yes, $\{a/Shoot\} \leftarrow \text{substitution (binding list)}$

Given a sentence S and a substitution σ , $S\sigma$ denotes the result of plugging σ into S; e.g., S = Smarter(x, y) $\sigma = \{x/Hillary, y/Bill\}$ $S\sigma = Smarter(Hillary, Bill)$

Ask(KB,S) returns some/all σ such that $KB \models S\sigma$

Knowledge base for the wumpus world

"Perception"

 $\begin{array}{ll} \forall \, b, g, t \; \; Percept([Smell, b, g], t) \; \Rightarrow \; Smelt(t) \\ \forall \, s, b, t \; \; Percept([s, b, Glitter], t) \; \Rightarrow \; AtGold(t) \end{array}$

Reflex: $\forall t \ AtGold(t) \Rightarrow Action(Grab, t)$

Reflex with internal state: do we have the gold already? $\forall t \ AtGold(t) \land \neg Holding(Gold, t) \Rightarrow Action(Grab, t)$

 $\begin{array}{l} Holding(Gold,t) \text{ cannot be observed} \\ \Rightarrow \text{keeping track of change is essential} \end{array}$

Deducing hidden properties

Properties of locations:

 $\begin{array}{ll} \forall x,t \;\; At(Agent,x,t) \wedge Smelt(t) \; \Rightarrow \; Smelly(x) \\ \forall x,t \;\; At(Agent,x,t) \wedge Breeze(t) \; \Rightarrow \; Breezy(x) \end{array}$

Squares are breezy near a pit:

 $\begin{array}{l} \mathsf{Causal rule--infer effect from \ cause} \\ \forall x,y \ \ Pit(x) \land Adjacent(x,y) \ \Rightarrow \ Breezy(y) \end{array}$

Neither of these is complete—e.g., the causal rule doesn't say whether squares far away from pits can be breezy

Definition for the Breezy predicate:

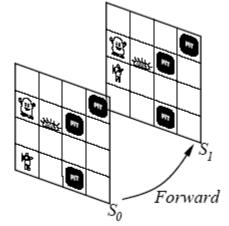
 $\forall y \ Breezy(y) \Leftrightarrow [\exists x \ Pit(x) \land Adjacent(x,y)]$

Keeping track of change

Facts hold in situations, rather than eternally E.g., Holding(Gold, Now) rather than just Holding(Gold)

Situation calculus is one way to represent change in FOL: Adds a situation argument to each non-eternal predicate E.g., Now in Holding(Gold, Now) denotes a situation

Situations are connected by the Result function Result(a, s) is the situation that results from doing a in s



Describing actions I

"Effect" axiom—describe changes due to action $\forall s \ AtGold(s) \Rightarrow Holding(Gold, Result(Grab, s))$

"Frame" axiom—describe non-changes due to action $\forall s \; HaveArrow(s) \Rightarrow HaveArrow(Result(Grab, s))$

Frame problem: find an elegant way to handle non-change

- (a) representation—avoid frame axioms
- (b) inference—avoid repeated "copy-overs" to keep track of state

Qualification problem: true descriptions of real actions require endless caveats what if gold is slippery or nailed down or . . .

Ramification problem: real actions have many secondary consequences what about the dust on the gold, wear and tear on gloves, ...

Describing actions II

Successor-state axioms solve the representational frame problem

Each axiom is "about" a predicate (not an action per se):

- $\mathsf{P} \ \mathsf{true} \ \mathsf{afterwards} \ \Leftrightarrow \ [\mathsf{an} \ \mathsf{action} \ \mathsf{made} \ \mathsf{P} \ \mathsf{true}$
 - \vee P true already and no action made P false]

For holding the gold:

$$\begin{array}{l} \forall \, a,s \;\; Holding(Gold,Result(a,s)) \; \Leftrightarrow \\ [(a = Grab \wedge AtGold(s)) \\ \lor \; (Holding(Gold,s) \wedge a \neq Release)] \end{array}$$

Summary

- First-order logic:
 - objects and relations are semantic primitives
 - syntax: constants, functions, predicates, equality, quantifiers
- Increased expressive power: sufficient to define wumpus world